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1  Introduction

Autism, or autism spectrum disorder (ASD), 
refers to a neurodevelopmental disorder that is 
characterized by a person’s repetitive behav-
iors, social interaction and skills, nonverbal and 
speech communication, and learning skills. The 
symptoms of autism generally appear in child-
hood (within 2–5 years old) and then develop 
through time. Thus the diagnosis of autism can 
be done at any age: childhood, adolescence, 
or adulthood [1]. Several challenges are met 
by people with ASD which include difficulties 
with concentration; attention to details; unable 
to understand other perspectives; facing diffi-
culties in learning; and mental health problems 
such as depression, anxiety, and the likes.

Several etiologies present in the biology 
of autism make it difficult to generalize [2]. 

For example, some children may have frank 
immune disorders, while others may bear the 
gastrointestinal disease. Additionally, in some 
cases autism signs become observable from 
birth, and for others the symptoms regress with 
time. Autism begins at early stage (childhood) 
and generally persists into adolescence and 
adulthood. According to Mayada et al. [3], in 
every 160 children, 1 child has ASD. People hav-
ing ASD may live independently or may require 
consistent care and assistance depending on the 
severity of their disabilities.

Several screening tools exist primarily to 
screen autism in young toddlers, while some 
tools exist for matured persons, teenagers, and 
young children [4]. A number of researches 
have been conducted focusing on developing 
such screening tools as well as comparing the 
performance of such tools. Machine learning 
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(ML) plays a crucial role in diagnosing various 
diseases, including the diagnosis of autism or 
ASD [5]. Using sufficiently large ASD screening 
datasets, ML can predict autism traits up to a 
certain accuracy level in an individual and thus 
has opened a wide range of scope for further 
research in this field. A survey-based research 
was done by Hyde et  al. [6] which not only 
reviewed existing research works in this field but 
also introduced possibilities of further research 
in this field using supervised ML. In Ref. [7], Lee 
et al. compared the performance of several ML 
techniques, including random forest, NB–SVM 
(Naïve Bayes–support vector machine), and 
NN, to predict ASD among the children in the 
United States. A comprehensive analysis was 
done by Bone et al. [8], where they focused both 
on the possibilities and disadvantages of adopt-
ing ML algorithms in the diagnosis of ASD.

Diagnosis of autism is associated with time, 
cost, and effort. Thus diagnosing a person at an 
early stage is recommended to reduce the cost 
and to help the autistic person by prescribing 
proper medication from early stage. Therefore 
an effective and time-efficient system is required 
to predict autism traits accurately.

The objective of this chapter is to explore the 
existing tree-based ML techniques and propose 
a new tree-based ML method to predict autism 
traits of a person at any age. In order to attain 
this research objective, at the beginning, a good 
number of previous research works were studied 
that focus on predicting early autism traits using 
ML techniques. The literature survey showed 
that large and precise datasets are required for 
screening ASD that consist of behavioral traits 
of previous autistic and nonautistic patients. In 
this research, AQ-10 dataset [9] was collected 
and preprocessed for further analysis. A set of 
real data was collected from 250 ASD and non-
ASD cases to further check the reliability of 
the proposed algorithms. To explore the tree-
based prediction models, at first decision tree 
algorithms Classification and Regression Tree 
(CART) and Iterative Dichotomiser 3 (ID3) were 
implemented and tested against the datasets 

(both AQ-10 and collected real dataset). Later 
on, as the CART algorithm performed better 
compared to ID3, random forest classifier based 
on CART algorithm was implemented by gener-
ating array of decision trees. Finally, to improve 
the prediction performance, a new tree-based 
approach was proposed that combines ID3 and 
CART trees in a merged random forest classi-
fier. All the three prediction algorithms were 
then evaluated on both AQ-10 and collected 
real datasets. It is worth mentioning here that 
the previous version of this work is published 
in Ref. [10]. In this chapter the contribution is 
extended by doing an in-depth analysis of the 
tree-based algorithms and discussing how they 
can be used to model ASD diagnosis tools.

The organization of the remaining sections 
of this chapter is as follows. Section 2 provides 
basic idea about tree-based ML methods (spe-
cifically decision tree and random forest) and 
sheds light on the related works done in this 
field. The overall research methodology has 
been discussed in Section  3. Sections  4 and  5 
consecutively delineate the steps of data analy-
sis and algorithm development. In Section 6 the 
proposed algorithms have been evaluated on the 
basis of some well-known metrics that include 
sensitivity, specificity, and accuracy. Finally, Sec-
tion 7 concludes the chapter with a brief discus-
sion and possible future implications.

2  Theoretical background and related 
works

2.1  Machine learning

ML is a technique where the algorithm learns 
its behavioral traits from the provided input data 
(training data) instead of being explicitly pro-
grammed, and later it classifies new data (testing 
data) based on its learning. ML algorithms can 
be mainly divided into two categories: super-
vised and unsupervised. In supervised learn-
ing the input data are labeled into predefined 
classes, while in unsupervised learning, neither 
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the classification is predefined nor the input data 
are labeled. Both regression and classification 
algorithms come within the scope of supervised 
ML, and unsupervised ML represents different 
types of clustering algorithms. In this research 
work, tree-based classifier algorithms (CART, 
ID3) have been used which are basically super-
vised ML techniques.

2.1.1  Decision tree
A decision tree is a classifier supervised ML 

algorithm that uses a tree-like model where each 
internal node represents a feature of the input 
dataset and each leaf node represents a class 
label. The sequence of the features is selected 
using some statistical calculations. Some com-
mon decision tree algorithms are ID3, C4.5 
(extension of ID3), CART, CHAID (chi-squared 
automatic interaction detector), MARS (multi-
variate adaptive regression splines), etc. In this 
research work, two well-known decision tree 
algorithms ID3 and CART have been employed.

2.1.2  Random forest
In random forest classifier, multiple decision 

trees are generated by selecting different com-
binations and sequences of the attribute nodes 
randomly, and together they form one single 
forest. In this method, each decision tree model 
predicts a class for the input data and the class 
with the maximum number of votes is selected 
finally. A combination of multiple decision trees 
is more likely to reduce overfitting compared to 
a single decision tree model and thus improves 
the overall predictive model.

2.2  Overview of the related studies

Several studies have been carried out for 
predicting autism traits in an individual using 
different ML techniques. This section briefly 
introduces some of these studies.

Alternating decision tree (ADTree) was used 
by Wall et al. [11] to reduce the screening time 
and to make the detection of ASD traits even 
faster. Using Autism Diagnostic Interview and 

Revised (ADI-R) method, they achieved 99.9% 
accuracy with data of 891 individuals. However, 
the test data were limited only within the age 
of 5–17 and thus is not considered as a general-
ized method of screening ASD. In another work, 
Bone et  al. [12] adopted ML to achieve similar 
purpose and obtained 89.2% sensitivity and 59% 
specificity using SVM. Their research was con-
ducted on the basis of 462 individuals with non-
ASD traits and 1264 individuals with ASD traits. 
But, as the age range used for their research was 
wide (4–55 years), their work did not particu-
larly focus on how the proposed system works 
to predict ASD among individuals of different 
age groups like child, adolescent, and adult.

Allison et al. [13] proposed a set of instruments 
as “Red Flags” for producing shorter version of 
dataset containing 1000 cases and 3000 controls 
for screening ASD with a high accuracy. In a 
recent study, Selvaraj et al. [14] tried to improve 
the performance of random tree classifier algo-
rithm in ASD prediction (specifically for toddlers) 
by using effective feature selection algorithms.

Thabtah [15] compared the existing ML-based 
algorithms for the prediction of autism traits and 
emphasized on the adaptation of the new DSM-V 
(Diagnostic and Statistical Manual of Mental 
Disorders) module for autism screening tools 
rather than DSM-IV. Similarly, van den Bekerom 
[16] researched on determining cooccurring con-
ditions with ASD. From the findings, some of 
these conditions are as follows: developmental 
delay, obesity, and less physical activity. In order 
to determine ASD traits in children, they used 
several ML algorithms, including random forest, 
SVM, NB, and later compared those results.

An effort was made by Hauck and Kliewer 
[17] to identify comparatively more effective and 
important screening questions for both Autism 
Diagnostic Observation Schedule (ADOS) and 
ADI-R screening methods. They used SVM tech-
nique on ADOS, ADI-R datasets and achieved 
85% sensitivity and 80%–90% specificity. They 
also figured out that when combined together, 
ADOS and ADI-R screening tests can give bet-
ter performance. A similar work was done by 
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Wall et al. [18] where they tried to classify autism 
with the help of short screening test and vali-
dation. They indicated that 8 of the 29 items 
contained in Module 1 of the ADOS were suf-
ficient to classify autism. They used ADOS Mod-
ule 1 data from the Autism Genetic Resource 
Exchange and applied 16 alternative classi-
fiers by performing a series of ML techniques. 
According to their finding, both ADTree and 
functional tree performed really well with high 
values of accuracy specificity, and sensitivity.

Applying deep learning algorithm and neu-
ral network, Heinsfeld [19] tried to identify 
ASD patients from the Autism Brain Imaging 
Data Exchange (ABIDE I). Using the large brain 
imaging dataset, he achieved a mean classifica-
tion accuracy of 70% (sensitivity 74%, specificity 
63%), and a range of accuracy of 66%–71%. The 
SVM classifier achieved mean accuracy of 65% 
(from 62% to 72%, sensitivity 68%, and speci-
ficity 62%), while the random forest classifier 
achieved a mean accuracy of 63% (sensitivity 
69%, specificity 58%). In Ref. [20], Xu et al. used 
a multilayer artificial neural network along with 
a sliding window approach to classify children 
with ASD and typically developing. The classifi-
cation was done on the basis of short-time spon-
taneous hemodynamic fluctuations, and a high 
accuracy of 92.2% could be achieved even with a 
single optical channel.

Deshpande et  al. [21] investigated on effec-
tive connectivity among brain areas during 

intentional causal attribution in ASD and to uti-
lize ML techniques to classify participants based 
on effective connectivity weights in which they 
were able to successfully classify participants by 
diagnosis with 95.9% accuracy.

Liu et  al. [22] examined whether face scan-
ning patterns could be potentially useful to 
identify children with ASD by adopting an ML 
algorithm for the classification purpose. They 
have applied SVM to analyze an eye movement 
dataset from a face recognition task, to classify 
children with and without ASD and gained a 
maximum classification sensitivity, AUC, accu-
racy, and specificity of 93.10%, 89.63%, 88.51%, 
and 86.21%, respectively.

Kosmicki et al. [23] used ML for evaluating the 
ADOS to test whether only a subset of behavior 
is sufficient to decide on traits of ASD and non-
ASD among children. They used eight ML algo-
rithms: ADTree, functional tree, LibSVM, logistic 
model trees, logistic regression, NB, random for-
est for a large dataset of 4540, and detected ASD 
risk with 98.27% and 97.66% accuracy for ADOS 
module 2 and 3, respectively.

In order to identify the issues in conceptual 
problem formation, methodological implemen-
tation, and interpretation, Bone et  al. [8] ana-
lyzed the previous works of Wall et al. [18] and 
Kosmicki et al. [23] and used ML approach pro-
posed by them to reproduce the results.

Summary of the previous research works 
discussed in this section has been presented in 

TABLE 9.1 � Summary of previous works.

Reference Technique/algorithm Prediction results

[11] Alternating decision tree Accuracy = 99.9%

[12] Support vector machine Specificity = 59%, Sensitivity = 89.2%

[17] Support vector machine Specificity = 85%, Sensitivity = 80%–90%

[19] Neural network
Support vector machine random forest

Accuracy = 70%, Specificity = 85%, Sensitivity = 74%
Accuracy = 66%, Specificity = 62%, Sensitivity = 68%  

Accuracy = 63%, Specificity = 58%, Sensitivity = 69%

[22] Support vector machine Specificity = 86.21%, Sensitivity = 93.10%

[23] Eight different machine learning algorithms, 
i.e., ADTree, functional tree, and LibSVM

Accuracy = 98.27%
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Table  9.1. In brief, a wide horizon of research 
works has been done and still going on to better 
diagnose the symptoms of ASD using different 
computational ML algorithms and techniques.

3  Research methodology

The outline of the research methodology is 
illustrated in Fig.  9.1. First, the AQ-10 dataset 
was collected from UCI ML repository [9]. Then 
data were preprocessed and cleaned properly. 
Later on, best features were selected which con-
tribute most to the prediction variable. Then the 
data were partitioned into training and test sub-
sets. At first, decision tree algorithm was used 
to generate the first predictive model using the 
training set. Using test portion of the data, per-
formance parameters of the model were calcu-
lated. Later on applying the same procedures, 
random forest algorithm was used to create the 

second predictive model that outperformed deci-
sion tree. Finally, a new approach was proposed, 
merged random forest classifier, that had the best 
outcomes among all three algorithms. To validate 
the model, real data was collected from general 
mass and from an institute of special education 
for autistic people. Finally, the outcomes of each 
model were validated using real data.

4  Data collection and analysis

4.1  Data collection

To train an effective predictive model, datas-
ets were collected which consist of AQ-10 screen-
ing tool questions as presented in Ref. [9]. The 
AQ-10 datasets are open-source data and were 
collected from the UC Irvine ML Repository. 
Basically, AQ-10 screening tool is used to discern 
whether or not an individual requires compre-
hensive autism assessment. It imposes greater 

FIGURE 9.1  Phases of research methodology.
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importance to 10 screening test questions that 
can easily be completed within a short period 
of time, and results would guide if user needs 
extensive autism assessment. There are three 
different categories of AQ-10: AQ-10 Child (4–11 
years), Adolescent (12–16 years), and Adult (18 
or more) versions. The datasets consist of data 
from these three different age brackets.

The AQ-10 questionnaire contains 10 ques-
tions that slightly differ from each of the three 

versions. Fig.  9.2 shows the questionnaires of 
AQ-10 Adolescent version.

AQ-10 questions are extracted uniformly 
from five different sections: attention to detail, 
attention switching, communication, imagina-
tion, and social interaction. Users can “slightly” 
or “definitely” agree or disagree to each of the 10 
questions. “Definitely” or “slightly” acquires the 
same score for all the questions. After answer-
ing all the questions, a user gets a score between  

FIGURE 9.2  AQ-10 questionnaires (adolescent) [24].
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0 and 10 [24]. Datasets acquired from UC Irvine 
ML repository of child, adolescent, and adult 
versions contain 292, 104, and 704 data samples, 
respectively. The datasets contain 21 features, 
including the “Class” column which is our tar-
get variable. Detailed description of the features 
is illustrated in Table 9.2.

4.2  Data preprocessing

The collected datasets had many irrelevant 
and missing parts in data and those were prop-
erly cleaned. The ID column does not affect the 
probability of having autism traits in an individ-
ual; thus the column was dropped. Decision tree 
algorithm was used to extricate irrelevant attri-
butes from the datasets. The outcome illustrated 
that removing “relation,” “age desc,” “used app 
before,” and “age” columns improved overall 
performance of the prediction models and thus 
the columns were removed. A summary of the 
preprocessed datasets is shown in Table 9.3.

4.3  Collection of real dataset

In order to validate the research work, true 
data were collected through survey. Data were 
collected from two resources: general mass (non-
ASD cases) and an institute of special education 
(ASD cases). The data were collected by on-spot 
survey, Google forms, and by e-mailing to dif-
ferent academic organizations. Most of the data 
were collected from on-spot survey with printed 
forms. These survey questionnaires were pre-
pared using the different attributes from the 
AQ-10 dataset. The survey was divided into 
three categories: child version with age group 
4–11, adolescent version aging 12–17 years, and 
adult version with age above 18 years.

Total 62, 31, and 42 instances of real data were 
collected for child, adolescent, and adult ver-
sions. The summary of collected real data is pre-
sented in Table 9.4.

5  Developing predictive algorithm

5.1  Decision tree—CART algorithm

Initially, to construct the first predictive 
model for ASD diagnosis, a tree-based ML algo-
rithm, decision tree—CART, was chosen. ML is 
an ever evolving sector of artificial intelligence 
that mimics human intelligence by acquiring 
knowledge from the surroundings. ML mod-
els have been applied successfully in myriad 
fields ranging from pattern recognition, web 

TABLE 9.2 � Description of features of ASD dataset [9].

Feature Description

Age Age in years

Gender Male/female

Ethnicity Ethnicity of the participants

Jaundice Yes/no

Family member with 
PDD

If a family member has a perva-
sive development disorder

Who is completing 
the test

Parent/self/caregiver/medical 
staff/clinician

Country of residence Country of the participants

Used the screening 
app before

If they previously used the 
screening app

Screening method 
type

Child/adolescent/adult version

Question 1–10 answer Answer code 0/1 for each of the 
ten questions

Result Final score based on scoring 
algorithm of the test

Class Label class if patient has ASD 
traits or not

TABLE 9.3 � Summary of AQ-10 dataset.

Age bracket

Overall 
preprocessed 
data instances

Percentage of 
male versus 
female

Age (mean) 
(years)

4–11 Years 248 Male: 70.16
Female: 29.84

6.43

12–16 Years 98 Male: 50
Female: 50

14.13

18 and above 608 Male: 52.7
Female: 47.3

29.63



172	 9.  Exploring tree-based machine learning methods to predict autism spectrum disorder	

﻿ �﻿﻿

search engines, picture labeling, finance, enter-
tainment, spam detection, medical applications,  
etc. [25].

Generally, decision tree constructs a tree-
based predictive model where each internal 
node depicts a test on an input attribute, each 
branch renders result of a test and each leaf node 
constitutes one of the class labels. The upper-
most node of decision tree is called the root 
node. Decision trees are constructed using algo-
rithms that learn ways to partition data based 
on divergent conditions. A sample predictive 
model generated via decision tree is shown in 
Fig. 9.3.

Initially, the root node of decision tree con-
tains the entire data. Then, data start to split 
for some feature at each step. Gini impurity 
and information gain (IG) are used to decide 
which feature to split on at each stage. Feature 
with maximum IG is selected to partition data. 
The splitting procedure continues until the leaf 
nodes are unmixed or until IG is zero. Gini 
impurity and IG of decision tree (CART) [26] 
classifier can be defined as

∑( ) ( )= −
∈

P iGini data 1
i

2

unique_classes	
(5.1)

∑
( )

( ) ( )= −
∈

X
i

InfoGain data, feature 
Gini data   AvgGini

i Xfeature	 (5.2)

Implementation of decision tree algorithm 
can be divided into two phases: (1) constructing 

the tree (Line 4–14 in Algorithm 1) and (2) clas-
sifying test data (Line 16–20 in Algorithm 1). The 
whole procedure can be described in the follow-
ing steps:

•	 At first, best attributes were chosen to 
generate the predictive model (Line 1) and 
the two possible class labels were listed 
(Line 2).

•	 Next, the train portion of data is passed 
into “CONSTRUCT_TREE” function (Line 
4). Each attribute of the dataset is iterated 
and the attribute with maximum IG is 
picked (Line 5–7). If maximum IG is zero, 
then that indicates that the class label of 
that fragment of data is unmixed and thus 
function will return a decision/leaf node 
(Line 8–10).

•	 If maximum IG is not equal to zero, then 
data are partitioned into two fragments 
(TrueData and FalseData) (Line 11).

•	 “CONSTRUCT_TREE” function will then 
run recursively on both segments of the 
data (TrueData and FalseData) (Line 12–13), 
and the two edges/branches will create a 
decision node (Line 14).

•	 Lastly, after the decision tree model is 
formed, test portion of data is classified from 
it. The predictive model classifies each test 
example by iterating its feature values from 
the root to some leaf node. The leaf node 
provides class label for the test case (Line 
16–21).

Ginidata=1−∑i∈unique_classesPi2

InfoGaindata, feature X=Ginidata 
−∑i∈featureXAvgGinii

TABLE 9.4 � Summary of collected real dataset.

Age bracket
Overall preprocessed 
data instances

Percentage of male 
versus female

Percentage of autistic–
nonautistic

Age (mean) 
(years)

4–11 Years 62 Male: 60.2
Female: 30.8

51.61% Autistic
48.39% Nonautistic

7.81

12–16 Years 31 Male: 74.6
Female: 25.4

52.38% Autistic
47.62% Nonautistic

15.21

18 and above 42 Male: 61.9
Female: 30.1

51.61% Autistic
48.39% Nonautistic

23.6
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Algorithm 1 Decis ion tree CART 
algorithm
1:	 attributes ←  {screening tool questions, 

jaundice, ethnicity, gender, family with PDD, 
etc.}

2:	 label_class ←  {yes, no}
3:	
4:	 Function CONSTRUCT_TREE(data)
5:	 for each attribute do
6:    calculate max_info_gain
7:	 end for
8:	 if max_info_gain = 0 then
9:    return leaf_node

10:	 end if
11:	 TrueData, FalseData ←  Split(data)
12:	 True_Branch ←  CONSTRUCT_

TREE(TrueData)
13:	 False_Branch ←  CONSTRUCT_

TREE(FalseData)
14:	 return Decision_Node(True_Branch, False_

Branch)
15:	
16:	 Function CLASSIFY_DATA(data, node)
17:	 if node = leaf_node then
18:    return node.predicions
19:	 else
20:    Iterate DecisionTree
21:	 end if

←

←

←
←

←

5.2  Random forest–CART algorithm

Random forest classifier constructs multi-
ple decision trees using different smaller sub-
samples of the data each time. It changes the 
approach of how the standard decision trees 
are generated. In standard trees, each decision 
node is created using the best IG among all 
features.

In a random forest, each individual tree is 
generated by taking a random sample from 
the training dataset, which results in different 
decision trees. Additionally, in a random forest 
each tree can pick attributes only from a ran-
dom subset of attributes. This forces even more 
variation among the trees and imposes more 
diversity. This tactics turns out to perform very 
well compared to many other classifiers and 
also prevents overfitting to a great extent [27]. 
An outlook of random forest classifier is illus-
trated in Fig. 9.4.

To improve the performance parameters of 
the decision tree (CART) model, random for-
est (CART) algorithm was implemented. The 
implementation of the algorithm can be divided 
into two phases: constructing the random forest 
model (Line 1–11 in Algorithm 2) and classify-
ing the test examples (Line 13–29 in Algorithm 
2). Construction of random forest model and its 
classification process can be described in the fol-
lowing steps:

•	 First, an array, “array_of_trees,” is created 
to store the decision trees of random forest 
(Line 4).

•	 To construct “n” number of decision trees, 
CONSTRUCT_TREE function is called for 
“n” times and the produced trees are then 
appended in “array_of_trees” (Line 5–10).

•	 Each decision tree is constructed using “p” 
number of random features. Procedure of 
constructing decision tree is identical to 
Algorithm 1 (Line 1–14 of Algorithm 1).

•	 Lastly, to classify a test example, each of the 
decision trees from the random forest votes 
for a class label (Yes/No). If majority of votes 

FIGURE 9.3  A sample decision tree.
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are “Yes,” then the test example is classified 
as a patient having probable autistic traits 
or else the patient is classified as having no 
autistic traits (Line 13–29).

Algorithm 2 Random forest  CART 
algorithm

1:	 Identical to Line 1 to 14 of Algorithm 1
2:	
3:	 Function CONSTRUCT_FOREST (data, n, 

train_data_ratio)
4:	 array_of_trees ←  [ ]
5:	 while n ≠  0 do
6:  �  train_data ←  random(train_data_ratio * 

len(data))
7:    dtree ←  CONSTRUCT_TREE(train_data)
8:    dtree_array.append(dtree)
9:    n ←  n – 1

10:	 end while
11:	 return dtree_array
12:	
13:	 Function CLASSIFY_DATA(data, dtree_

array[ ], n)
14:	 j ←  0, vote_y ←  0, vote_n ←  0

15:	 while j ≠  n do
16:    dtree ←  dtree_array(j)
17:    node ←  root(dtree)
18:    if node = leaf_node then
19:      if leaf_node.prediction = “Yes” then
20:        vote_y ←  vote_y + 1
21:      else if leaf_node.prediction = “No” then
22:        vote_n ←  vote_n + 1
23:      end if
24:    else
25:      Iterate_dtree
26:    end if
27:    j ←  j + 1
28:	 end while
29:	 return vote_y > vote_n

5.3  Merged random forest algorithm

In order to improve the performance param-
eters comparing to decision tree-CART and ran-
dom forest–CART, an algorithm is proposed 
that combines the idea of random forest–CART 
with random forest–ID3. The proposed algo-
rithm can be divided into two phases just as 

←
≠
←

←

←

←←←

≠
←
←

←

←

←

FIGURE 9.4  Random forest model.
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before: (1) constructing the merged random for-
est model and (2) classifying test data. In this 
proposed approach the addition of random ID3 
trees made the predictive model more accurate. 
The entire process is described in the following 
steps:

•	 In order to build the predictive model, 
CONSTRUCT_FOREST function is called 
and “n” number of ID3 decision trees and 
“n” number of CART decision trees are 
generated. Later, the generated trees are 
stored in an array, “forest_array” (Line 
28–38).

•	 Procedure of constructing ID3 trees (Line 
4–14) and CART trees (Line 16–26) is the 
same as Algorithm 1. Difference between 
an ID3 tree and a CART tree is that in ID3 
decision tree IG is computed using entropy, 
while in CART decision tree IG is computed 
using Gini impurity.

•	 Lastly, to classify a test data, each of the 
decision trees from the merged random 
forest votes for a class label (Yes/No). 
If majority of votes are “Yes,” then that 
instance of test data is classified as a patient 
having probable autistic traits. On the other 
hand, if majority of votes are “No,” then 
the patient is classified as having no autistic 
traits (Line 40–56).

Algorithm 3 Merged random forest 
a lgorithm

1:	 attributes ←  {screening tool questions, 
jaundice, ethnicity, gender, family with PDD 
etc.}

2:	 label_class ←  {yes, no}
3:	
4:	 Function CONSTRUCT_TREE_ID3(data)
5:	 for each attribute do
6:    calculate max_info_gain
7:	 end for
8:	 if max_info_gain = 0 then
9:    return leaf_node

10:	 end if
11:	 TrueData, FalseData ←  Split(data)
12:	 True_Branch ←  CONSTRUCT_TREE_

ID3(TrueData)
13:	 False_Branch ←  CONSTRUCT_TREE_

ID3(FalseData)
14:	 return Decision_Node(True_Branch, False_

Branch)
15:	
16:	 Function CONSTRUCT_TREE_CART(data)
17:	 for each attribute do
18:    calculate max_info_gain
19:	 end for
20:	 if max_info_gain = 0 then
21:    return leaf_node
22:	 end if
23:	 TrueData, FalseData ←  Split(data)
24:	 True_Branch ←  CONSTRUCT_TREE_

CART(TrueData)
25:	 False_Branch ←  CONSTRUCT_TREE_

CART(FalseData)
26:	 return Decision_Node(True_Branch, False_

Branch)
27:	
28:	 Function CONSTRUCT_FOREST (data,  

n, train_data_ratio)
29:	 forest_array ←  [ ]
30:	 while n ≠  0 do
31:  �  train_data ←  random(train_data_ratio * 

len(data))
32:  �  Id3_tree ←  CONSTRUCT_TREE_

ID3(train_data)
33:  �  Cart_tree ←  CONSTRUCT_TREE_

CART(train_data)
34:    forest_array.append(Id3_tree)
35:    forest_array.append(Cart_tree)
36:    n ←  n – 1
37:	 end while
38:	 return forest_array
39:	
40:	 procedure CLASSIFY_DATA(data, forest_

array[ ], n)
41:	 j ←  0, vote_y ←  0, vote_n ←  0
42:	 while j ≠  n do
43:    ftree ←  forest_array(j)

←

←

←
←

←

←
←

←

←
≠
←

←

←

←

←←←
≠
←
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44:    node ←  root(ftree)
45:    if node = leaf_node then
46:      if leaf_node.prediction = “Yes” then
47:        vote_y ←  vote_y + 1
48:      else if leaf_node.prediction = “No” then
49:        vote_n ←  vote_n + 1
50:      end if
51:  else
52:      Iterate_ftree
53:      end if
54:	 j ←  j + 1
55:	 end while
56:	 return vote_y > vote_n

6  Evaluating predictive models

The prediction models would recommend a 
nondiagnosed person from two possible classes:

“Yes” (Person is likely to have autistic traits), and
“No” (Person does not have autistic traits)

To assess the predictive models, performance 
parameters, namely, specificity, sensitivity, accu-
racy, false positive rate, and precision, were cal-
culated. Accuracy of the system is defined by 
how correctly the machine predicts the condition 
of the users. Sensitivity calculates the fraction of 
true positives that are rightly identified as such. 
Specificity computes the fraction of true nega-
tives that are rightly identified as such. Precision 
refers to what fraction of positive identifications 
is actually right. Each of these parameters was 
calculated for two different datasets (AQ-10 and 

real dataset). The metrics used to measure the 
performance can be defined as follows:

=
+

TN
TN FP

Specificity

=
+

TP
FN TP

Sensivity

=
+

TP
TP FP

Precision

=
+

FP
TN FP

False-positive rate

= +
+ + +

TN TP
TN TP FN FP

Accuracy

6.1  Evaluation using AQ-10 datasets

6.1.1  Results of Algorithm 1 (decision tree-
CART)

AQ-10 datasets were split into train and test 
set to evaluate performance parameters of the 
implemented algorithms. To compute the per-
formance parameters, leave-one-out technique 
was followed. In leave-one-out technique, each 
instance of whole dataset is split once. While pre-
dicting an instance of data, entire dataset except 
that instance will be used to train the predictive 
model. Calculated performance parameters for 
different age groups are shown in Table 9.5.

The results showed that the decision tree 
algorithm works better for children (89.92% 
accuracy) and adult (88.32% accuracy), while for 
the adolescent it showed only 73.47% accuracy 
with a false-positive rate of 30.55. The reason 
behind poor performance on adolescent data is 

←

←

←

←

Specificity=TNTN+FP

Sensivity=TPFN+TP

Precision=TPTP+FP

False-positive rate=FPTN+FP

Accuracy=TN+TPTN+TP+FN+FP

TABLE 9.5 � Results of Algorithm 1 using AQ-10 dataset.

Age group Accuracy Specificity Sensitivity Precision False-positive rate

Child 89.92 89.34 90.47 89.76 10.66

Adolescent 73.47 69.44 75.81 81.03 30.55

Adult 88.32 89.95 84.44 77.94 10.04
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that the AQ-10 adolescent dataset contains only 
98 instances, which may not be sufficient to train 
the model.

6.1.2  Result of Algorithm 2 (random forest–
CART)

Performance parameters of decision tree 
(CART) were improved by implementing ran-
dom forest (CART) algorithm on AQ-10 dataset. 
The leave-one-out technique was used to mea-
sure the performance parameters as well. Calcu-
lated performance parameters for different age 
groups are shown in Table 9.6.

The random forest–CART algorithm showed 
better results in the case of adults with an accu-
racy of 96.91% and a very low false-positive rate 
(4.07). It displayed almost a similar performance 
for child (91.70% accuracy) and adolescent 
(92.73% accuracy) dataset.

6.1.3  Result of Algorithm 3 (merged 
random forest classifier)

To further improve the random forest (CART) 
classifier accuracy, it was then merged with 
random forest (ID3) classifier and performance 
parameters indicated that adding ID3 trees to the 
random forest improves overall performance of 

the algorithm. Calculated performance param-
eters are shown in Table 9.7.

Merged random forest algorithm showed 
promising results for each of the three datasets. 
It was able to increase the accuracy for adult 
version of the predictive model up to 97.10%, 
while accuracy also improved marginally for 
child (92.26%) and adolescent (93.78%) versions 
as well. Comparative analysis of the three algo-
rithms for child, adult, and adolescent versions 
on AQ-10 dataset is displayed in Figs. 9.5–9.7.

6.2  Result analysis using real data

Almost 250 data instances were collected 
for child, adolescent, and adult versions from 
an institute of special education. AQ-10 datas-
ets were used to train the prediction model and 
then real data was tested with the model. Per-
formance parameters calculated on the imple-
mented algorithms are demonstrated in the 
following subsections.

6.2.1  Result analysis of Algorithm 1 
(decision tree-CART)

To validate the study the prediction models 
were tested for collected real dataset. At first, 

TABLE 9.6 � Results of Algorithm 2 using AQ-10 dataset.

Age group Accuracy Specificity Sensitivity Precision False-positive rate

Child 91.70 88.18 95.72 87.73 12.82

Adolescent 92.73 82.95 98.4 89.85 18.05

Adult 96.91 96.92 96.87 90.07 4.07

TABLE 9.7 � Results of Algorithm 3 using AQ-10 dataset.

Age group Accuracy Specificity Sensitivity Precision False-positive rate

Child 92.26 88.52 96.52 88.09 12.4

Adolescent 93.78 84.60 98.60 90.82 16.40

Adult 97.10 97.11 97.07 90.54 3.88
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the entire AQ-10 dataset was used to train the 
model applying decision tree algorithm. Then 
the model’s performance parameters were cal-
culated using collected real data. Calculated 
performance parameters of decision tree classi-
fier are showed in Table 9.8.

The results from the table illustrate that deci-
sion tree classifier works fairly well on adult 

dataset showing 83.10% accuracy, whereas it 
underperforms in child (75.04% accuracy) and 
adolescent (75.89% accuracy) data. The train-
ing dataset of AQ-10 adult version contains 608 
instances, whereas child and adolescent version 
contains only 248 and 98 instances, respectively. 
Due to less instances, the training models of 
child and adolescent version might be overfitted 

FIGURE 9.5  Comparison of performance parameters on AQ-10 dataset of child.

FIGURE 9.6  Comparison of performance parameters on AQ-10 dataset of adolescent.
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for training data and thus underperforms in real 
dataset.

6.2.2  Result analysis of Algorithm 2 
(random forest–CART classifier)

Random forest–CART classifier was used to 
build the second predictive model using entire 
AQ-10 dataset. Then the performance parame-
ters were calculated for the predictive model on 
collected real dataset. Calculated performance 

parameters of random forest–CART classifier 
are illustrated in Table 9.9.

From the results, it seemed that accuracy for 
each of the three datasets improved margin-
ally with respect to decision tree as random 
forest algorithm addresses the issue of overfit-
ting. Also, false-positive rate for child (18.66%) 
and adolescent (16.40%) versions dropped 
significantly.

FIGURE 9.7  Comparison of performance parameters on AQ-10 dataset of adult.

TABLE 9.8 � Results of Algorithm 1 using real data.

Age group Accuracy Specificity Sensitivity Precision False-positive rate

Child 75.04 72.57 78.4 71.03 30.40

Adolescent 75.89 69.6 80.7 71.82 33.20

Adult 83.10 81.11 80.07 82.94 12.87

TABLE 9.9 � Results of Algorithm 2 using real data.

Age group Accuracy Specificity Sensitivity Precision False-positive rate

Child 76.92 74.3 80.4 72.76 18.66

Adolescent 77.47 71.27 82.81 73.03 16.40

Adult 84.32 83.95 81.44 83.96 9.02
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6.2.3  Result analysis of Algorithm 3 
(merged random forest classifier)

Lastly, using AQ-10 dataset and the proposed 
merged random forest classifier, the final predic-
tive model was tested for real dataset. The per-
formance parameters for merged random forest 
classifier are showed in Table 9.10.

The results illustrate that merged random 
forest classifier outperformed the previous two 
algorithms. False-positive rate for all the three 
datasets decreased significantly, and accu-
racy and other parameters also had a marginal 
increase. Comparative analysis of the three algo-
rithms for child, adult, and adolescent versions 
on real dataset is displayed in Figs. 9.8–9.10.

TABLE 9.10 � Results of Algorithm 3 using real data.

Age group Accuracy Specificity Sensitivity Precision False-positive rate

Child 77.26 75.34 81.52 73.09 14.48

Adolescent 79.78 71.6 82.6 73.82 13.40

Adult 85.10 84.11 82.07 84.54 6.88

FIGURE 9.8  Comparison of perfor-
mance parameters on collected real data 
of child.

FIGURE 9.9  Comparison of perfor-
mance parameters on collected real data 
of adolescent.
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6.3  Comparison of performance on 
AQ-10 and real dataset

All of the three tree models showed better 
performance on AQ-10 dataset but performed 
comparatively poor on collected real dataset. 
For instance, merged random forest classifier 
showed an average accuracy of 94.38% on test 
portion of the three AQ-10 datasets, whereas 

on real datasets it showed an average accu-
racy of 80.71%. Additionally, false positive rate 
of merged random forest on AQ-10 datasets 
were 10.89% on average, whereas on real data-
set it was slightly higher (11.59%). Compari-
son of the performance gap between the two 
datasets for merged random forest classifier is 
illustrated in Fig.  9.11. It can be summarized 
that the performance parameters calculated for 

FIGURE 9.10  Comparison of per-
formance parameters on collected real 
data of adult.

FIGURE 9.11  Comparison of performance parameters between AQ-10 and real dataset (for merged random forest 
algorithm).
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collected real datasets are comparatively poor 
than AQ-10 datasets. As the real dataset was col-
lected through survey, respondents may not be 
enough sincere to provide accurate information 
in many cases and therefore there is a variation 
of performance parameters between two differ-
ent datasets.

7  Discussion and conclusion

In this study, AQ-10 dataset was used to 
develop a predictive model for classifying 
autism traits in individuals of different age 
groups by using less number of attributes. In 
this regard, three different tree-based predic-
tive models were implemented: decision tree, 
random forest, and merged random forest. The 
evaluation study showed that the merged ran-
dom forest classifier provides better results with 
more than 92% accuracy on the test data for 
child, adolescent, and adults. The performance 
parameters were comparatively inferior on col-
lected real dataset as a big portion of those data 
were collected using online survey methods 
and thus had some erroneous entries. Overall, 
the system uses fewer questionnaires and is 
adequate to provide effective outcomes to find 
autism traits in an individual.

ASD diagnosis is quite a long process and 
it is often deferred because of the difficulty for 
detecting it in children and adolescents. Earlier 
detection of autism traits can be really benefi-
cial. It would assign an individual for full-time 
assessment at quite an early stage and thus will 
lessen long-term costs associated with delayed 
diagnosis. Also with the help of ML, the system 
could provide accurate predictions. Many of the 
existing approaches of ML-based autism screen-
ing methods like [11,12] were not generalized 
for different age groups, whereas the proposed 
system can detect ASD for three distinct age 
categories. Also with fewer questionnaires, the 
system is efficient and more accurate than vari-
ous existing models like [12,17,19]. Furthermore, 

the study also provides a comparative view 
among three different tree-based ML methods 
and proposes a new approach: merged random 
forest. From the comparative analysis of the 
algorithms, it was concluded that the proposed 
merged random forest classifier outperformed 
the other two algorithms.

The work has a few limitations as well. First, 
major setback in implementing the system was 
availability of sufficiently large dataset. Training 
datasets related to ASD diagnosis are very rarely 
open sourced. Moreover, volume of data is also a 
prime limitation. Acquiring a large dataset could 
have generalized the prediction model even more. 
In future, we plan to collect a larger dataset for 
attaining better performance parameters that will 
make the prediction model more generalizable.

Second, collection of test data was very chal-
lenging. The target group was not comfortable 
answering odd questions about their children or 
close ones. Patients were very shy to cooperate 
and hesitant to participate in survey. Besides, 
ASD patients are quite rare in the perspective 
exposure. The parents or guardians of the ASD-
affected individual rarely want to expose the 
patient to any kind of difficult situation.

Third, the system developed provides some 
fixed category and preset questionnaires that 
may not be sufficient at times. There might be 
features/parameters from other screening tools 
which would make the model perform better. 
We plan to collect other ASD screening–related 
questionnaires to address this limitation.

References
	 [1]	 U. Frith, F. Happé, Autism spectrum disorder, Curr. 

Biol. 15 (19) (2005) R786–R790. 
	 [2]	 M. Randolph-GIps, Autism: a systems biology disease, 

2011 IEEE First International Conference on Healthcare 
Informatics, Imaging and Systems Biology, IEEE, 2011, 
pp. 359–366. 

	 [3]	 M. Elsabbagh, G. Divan, Y.J. Koh, Y.S. Kim, S. Kauch-
ali, C. Marcín, C. Montiel-Nava, V. Patel, C.S. Paula, C. 
Wang, M.T. Yasamy, E. Fombonne, Global prevalence of 
autism and other pervasive developmental disorders, 
Autism Res. 5 (3) (2012) 160–179. 

http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0015
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0015
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0015
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0015
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or9010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or9010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or9010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or9010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or9010


﻿ �﻿﻿

	 References	 183

	 [4]	 S. Bardhan, G.M.M. Mridha, E. Ahmed, M.A. Ullah, 
H.U. Ahmed, S. Akhter, et al., Autism Barta—a smart 
device based automated autism screening tool for 
Bangladesh, 2016 5th International Conference on In-
formatics, Electronics and Vision (ICIEV), IEEE, 2016,  
pp. 602–607. 

	 [5]	 I. Kononenko, Machine learning for medical diagnosis: 
history, state of the art and perspective, Artif. Intell. 
Med. 23 (1) (2001) 89–109. 

	 [6]	 K.K. Hyde, M.N. Novack, N. LaHaye, C. Parlett-Peller-
iti, R. Anden, D.R. Dixon, et al., Applications of super-
vised machine learning in autism spectrum disorder re-
search: a review, Rev. J. Autism Dev. Disord. 6 (2) (2019) 
128–146. 

	 [7]	 S.H. Lee, M.J. Maenner, C.M. Heilig, A comparison 
of machine learning algorithms for the surveillance 
of autism spectrum disorder, PLoS One 14 (9) (2019) 
e0222907. 

	 [8]	 D. Bone, M.S. Goodwin, M.P. Black, C.C. Lee, K. Aud-
hkhasi, S. Narayanan, Applying machine learning to 
facilitate autism diagnostics: pitfalls and promises, J. 
Autism Dev. Disord. 45 (5) (2015) 1121–1136. 

	 [9]	 F. Thabtah, (2017)Autistic Spectrum Disorder Screening Data 
for Children Data Set,  [Online]; available at: https://ar-
chive.ics.uci.edu/ml/datasets/Autistic+Spectrum+D
isorder+Screening+Data+for+Children++, (accessed 
22.08.18). 

	[10]	 K.S. Omar, P. Mondal, N.S. Khan, M.R.K. Rizvi, M.N. 
Islam, A machine learning approach to predict autism 
spectrum disorder, 2019 International Conference on 
Electrical, Computer and Communication Engineering 
(ECCE), IEEE, 2019, pp. 1–6. 

	[11]	 D.P. Wall, R. Dally, R. Luyster, J.Y. Jung, T.F. DeLuca, 
Use of artificial intelligence to shorten the behavioral 
diagnosis of autism, PLoS One 7 (8) (2012) e43855. 

	[12]	 D. Bone, S.L. Bishop, M.P. Black, M.S. Goodwin, C. 
Lord, S.S. Narayanan, Use of machine learning to im-
prove autism screening and diagnostic instruments:  
effectiveness, efficiency, and multi-instrument fusion, J. 
Child Psychol. Psychiatry 57 (8) (2016) 927–937. 

	[13]	 C. Allison, B. Auyeung, S. Baron-Cohen, Toward brief 
“red flags” for autism screening: the short autism spec-
trum quotient and the short quantitative checklist in 
1,000 cases and 3,000 controls, J. Am. Acad. Child Ado-
lesc. Psychiatry 51 (2) (2012) 202–212. 

	[14]	 S. Selvaraj, P. Palanisamy, S. Parveen, Autism spectrum 
disorder prediction using machine learning algorithms, 

International Conference on Computational Vision 
and Bio Inspired Computing, Springer, Cham, 2019,  
pp. 496–503. 

	[15]	 F. Thabtah, Autism spectrum disorder screening: ma-
chine learning adaptation and DSM-5 fulfillment, in: 
Proceedings of the 1st International Conference on 
Medical and health Informatics 2017, 2017. pp. 1-7. 

	[16]	 B. van den Bekerom, Using machine learning for detec-
tion of autism spectrum disorder, in: Proc. 20th Student 
Conf. IT, 2017, pp. 120–123. 

	[17]	 F. Hauck, N. Kliewer, Machine learning for autism di-
agnostics: applying support vector classification, Int’l 
Conf. Heal. Informatics Med. Syst, 2017. 

	[18]	 D.P. Wall, J. Kosmicki, T.F. Deluca, E. Harstad, V.A.  
Fusaro, Use of machine learning to shorten observa-
tion-based screening and diagnosis of autism, Transl. 
Psychiatry 2 (4) (2012) e100. 

	[19]	 A.S. Heinsfeld, A.R. Franco, R.C. Craddock, A. Buch-
weitz, F. Meneguzzi, Identification of autism spectrum 
disorder using deep learning and the ABIDE dataset, 
Neuroimage Clin. 17 (2018) 16–23. 

	[20]	 L. Xu, X. Geng, X. He, J. Li, J. Yu, Prediction in autism 
by deep learning short-time spontaneous hemodynam-
ic fluctuations, Front. Neurosci. 13 (2019) 1120. 

	[21]	 G. Deshpande, L. Libero, K.R. Sreenivasan, H. Desh-
pande, R.K. Kana, Identification of neural connectivity 
signatures of autism using machine learning, Front. 
Hum. Neurosci. 7 (2013) 670. 

	[22]	 W. Liu, M. Li, L. Yi, Identifying children with autism 
spectrum disorder based on their face processing ab-
normality: a machine learning framework, Autism Res. 
9 (8) (2016) 888–898. 

	[23]	 J.A. Kosmicki, V. Sochat, M. Duda, D.P. Wall, Search-
ing for a minimal set of behaviors for autism detec-
tion through feature selection-based machine learning, 
Transl. Psychiatry 5 (2) (2015) e514. 

	[24]	 T. Booth, A.L. Murray, K. McKenzie, R. Kuenssberg, M. 
O’Donnell, H. Burnett, Brief report: An evaluation of 
the AQ-10 as a brief screening instrument for ASD in 
adults, J. Autism Dev. Disord. 43 (12) (2013) 2997–3000. 

	[25]	 I. El Naqa, R. Li, M.J. Murphy, Machine Learning in Ra-
diation Oncology: Theory and Applications, Springer, 
2015. 

	[26]	 G. Williams, Decision trees, Data Mining With Rattle 
and R, Springer, New York, NY, 2011, pp. 205–244. 

	[27]	 A. Liaw, M. Wiener, Classification and regression by 
randomForest, R News 2 (3) (2002) 18–22. 

http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0025
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0025
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0025
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0025
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0025
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0025
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0030
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0030
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0030
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0035
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0035
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0035
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0035
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0035
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0040
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0040
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0040
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0040
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0045
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0045
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0045
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0045
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0050
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0050
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0050
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0050
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0050
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0055
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0055
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0055
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0055
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0055
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0060
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0060
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0060
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0065
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0065
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0065
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0065
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0065
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0070
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0070
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0070
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0070
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0070
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0075
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0075
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0075
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0075
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0075
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0080
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0080
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0080
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0080
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0085
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0085
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0085
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0090
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0090
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0090
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0095
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0095
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0095
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0095
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0100
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0100
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0100
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0100
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0105
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0105
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0105
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0110
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0110
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0110
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0110
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0115
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0115
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0115
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0115
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0120
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0120
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0120
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0120
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or0010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or0010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or0010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/or0010
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0125
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0125
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0125
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0130
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0130
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0135
http://refhub.elsevier.com/B978-0-12-822822-7.00009-0/ref0135

