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scenarios, is one of the most time-consuming processes 
in gait analysis, underscoring the need for automated 
solutions to enhance efficiency.

The current gold standard for automated gait event 
detection typically involves the use of force plates [6]. 
This method identifies gait events by detecting when 
the ground reaction force (GRF) values rise above or fall 
below a predetermined threshold, identifying them as 
foot touchdown (TD) and liftoff (LO). Accurate detec-
tion of these events relies on clean force plate data from 
both lower extremities. However, clean force plate data is 
often missing in older adults during perturbed walking 
due to half landing or cross landing on the force plates, 
which could greatly affect the detection accuracy, neces-
sitating time consuming manual cross-validation. The 
limited availability of force plates in many clinical set-
tings restricts the applicability of this method. Therefore, 

Introduction
Gait event detection is a fundamental component of gait 
analysis, crucial for the quantitative assessment of spa-
tiotemporal characteristics during both regular and per-
turbed walking [1, 2]. These characteristics include gait 
duration, reaction time, step length, and gait stability, 
which are essential for evaluating gait patterns, assessing 
balance control reactions, diagnosing gait disorders, and 
monitoring the efficacy of interventions [3–5]. However, 
detecting gait events, particularly in perturbed walking 
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Abstract
Accurate detection of gait events in older adults, particularly during perturbed walking, is essential for evaluating 
balance control and fall risk. Traditional force plate-based methods often face limitations in perturbed walking 
scenarios due to the difficulty in landing cleanly on the force plates. Subsequently, previous studies have not 
addressed gait event automatic detection methods for perturbed walking. This study introduces an automated 
gait event detection method using a bidirectional gated recurrent unit (Bi-GRU) model, leveraging ground reaction 
force, joint angles, and marker data, for both regular and perturbed walking scenarios from 307 healthy older 
adults. Our marker-based model achieved over 97% accuracy with a mean error of less than 14 ms in detecting 
touchdown (TD) and liftoff (LO) events for both walking scenarios. The results highlight the efficacy of kinematic 
approaches, demonstrating their potential in gait event detection for clinical settings. When integrated with 
wearable sensors or computer vision techniques, these methods enable real-time, precise monitoring of gait 
patterns, which is helpful for applying personalized programs for fall prevention. This work takes a significant step 
forward in automated gait analysis for perturbed walking, offering a reliable method for evaluating gait patterns, 
balance control, and fall risk in clinical settings.
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various kinematic-based algorithms have been devel-
oped, utilizing data from motion capture systems or 
wearable sensors such as Inertial Measurement Units 
(IMUs), to detect gait events. However, kinematic-based 
methods also have significant challenges for application 
in resource-constrained clinical settings. These meth-
ods often require trained personnel with biomechanical 
expertise to perform gait event detection, while the clini-
cians may lack training in gait biomechanics or gait anal-
ysis tools. Furthermore, these methods generate large 
datasets that require complex processing, interpretation, 
and cross-validation, which are difficult to meet in clin-
ics with limited computational resources and time con-
straints. Therefore, a cost-effective, easy-to-use, robust, 
and automation gait-event detection method is urgent for 
clinical practice.

Studies have demonstrated that automatic gait event 
detection algorithms based on marker position/veloc-
ity achieved high accuracy for regular walking in healthy 
adults [7–9]. A handful of additional studies have devel-
oped algorithms aimed at detecting gait events in path-
ological gait patterns, which have also demonstrated 
robust performance, maintaining an average absolute 
error of less than 40 milliseconds [10, 11]. However, 
to the best of our knowledge, no automated gait event 
detection algorithm currently exists for perturbed walk-
ing following slip or trip perturbations, which are crucial 
for assessing balance control and fall risk. Existing meth-
ods fail in these perturbed walking scenarios because 
they rely on assumptions of consistent and predictable 
gait patterns, which are often violated during perturba-
tions. For instance, slip perturbations can lead to diverse 
recovery strategies, including recovery steps with toe-
contact first, recovery steps with heel-contact first, or 
even aborted steps without clear toe liftoff [12]. Similarly, 
trip perturbations can result in highly variable responses 
such as lowering, elevating, and crossing strategies [13]. 
Even for the same individual, the recovery strategies 
could be different from trial to trial. This variability in 
recovery strategies introduces significant challenges for 
gait event detection. Previous methods, especially the 
traditional threshold-based algorithms, cannot handle 
this unpredictable nature of perturbed gait.

In recent years, deep learning techniques, particularly 
Recurrent Neural Networks (RNNs), have significantly 
advanced time series event detection across various fields 
including acoustics [14–16], seismic analysis [17, 18], 
manufacturing [19, 20], power systems [21, 22], anomaly 
detection [23], and medical sciences [24, 25]. Among 
these developments, the bidirectional gated recurrent 
unit (Bi-GRU) has emerged as a particularly effective 
model, outperforming traditional recurrent neural net-
work (RNN) approaches in various studies [14–16, 21, 
24, 25]. Building on this foundation, our work aims to 

develop an automatic gait event detection method spe-
cifically for perturbed walking scenarios in older adults, 
utilizing Bi-GRU models. Here, the automatic refers to 
the ability to detect gait events without requiring manual 
annotation during data analysis. We conduct a compre-
hensive analysis using data based on markers, angles, and 
GRFs to evaluate the feasibility of automatic step-time 
detection approaches for perturbed walking. This will 
further enhance operational efficiency by eliminating the 
need for labor-intensive manual cross-validation for the 
kinematic approach, which could be easily accomplished 
with wearable sensors. This paper will detail the method-
ologies employed, present a comprehensive evaluation 
of the three models, and discuss potential avenues for 
further refinement and optimization of our algorithms, 
thereby contributing to the advancement of automated 
gait analysis in clinical settings.

Methods
Participants
307 healthy older adults (Age: 70 ± 6.3 years; weight: 
75 ± 17  kg; height: 1.67 ± 0.11  m; gender: 58% female) 
from our ongoing NIH project (ClinicalTrials.gov 
NCT03199729; registration date: 06/19/2017; ​h​t​t​p​s​:​​​/​​/​c​l​i​
n​i​​c​a​l​​t​r​i​​a​l​​s​​.​g​​o​​v​/​​c​​t​2​​/​s​h​​​o​w​​/​N​C​T​0​3​1​9​9​7​2​9) were included 
in this study. All participants were screened to pass a 
descriptive questionnaire without self-reported recent 
neurological, musculoskeletal, or systematic disorders 
within 6 months. The study was carried out in accor-
dance with the Declaration of Helsinki of 1975, and all 
participants provided written informed consent which 
was approved by the Institutional Review Board of the 
University of Illinois at Chicago (IRB #: 2016 − 0887).

Experimental setup
All participants experienced at least 10 regular walking, 
1 slip, and 1 trip perturbation trials. The first 2 slips (if 
available), first 2 trips, and 3 random regular walking tri-
als were selected. Although 2 slip trials and 2 trip trials 
from the same subject were included, the inherent vari-
ability caused by the first-trial learning effect minimized 
the risk of data leakage [26]. Totally, the dataset con-
sists of 927 regular walking, 399 trips, and 529 slip tri-
als. All the trials were collected on a 7-meter walkway. 
The slip perturbations were triggered by a movable slider 
with a maximum distance of 75  cm, and trip perturba-
tions were induced by an obstacle device with a height 
of 8 cm. During regular walking, the movable slider and 
obstacle device were locked by a pair of electromagnets. 
During slip trials, the movable slider would be released 
within 50ms after a participant’s right (slipping) foot was 
detected in contact with the right platform, detected by 
the force plates (AMTI, Newton, MA) installed beneath 
the right platform. During trip trials, the obstacle device 
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was triggered when the vertical ground reaction force 
(GRF) under the unperturbed (right) limb exceeded 80% 
of the participant’s body weight after the touchdown 
of the right foot. Once the plate was unlocked, it could 
reach its upright position in less than 150ms. This would 
guarantee that all trips occurred in the late-swing phase. 
During regular walking, both the movable platform and 
the trip plate were locked. In all the trials, participants 
were instructed to walk at their preferred speed and in 
their preferred manner, and they were told that a slip or 
trip perturbation may or may not happen during any of 
the trials.

A full-body safety harness connected by shock-absorb-
ing ropes to a loadcell was used to protect participants 
from falling and to detect harness-supported body weight 
(Transcell Technology Inc., Buffalo Grove, IL). The har-
ness enabled participants to walk freely while providing 
protection against body impact on the floor. Kinematics 
from a full-body marker set (30 retro-reflective markers) 
were recorded by an eight-camera motion capture system 
(Qualysis, Gothenburg, Sweden) at 120 Hz and synchro-
nized with the force plate (AMTI, Newton, MA) data at 
600  Hz. Individual markers were initially identified and 
gap-filled using Qualisys software. Marker data were then 
analyzed using a custom MATLAB code (MathWorks, 
Natick, MA, USA) to generate foot, thigh and shank seg-
ment angles in sagittal plane. The foot angle was calcu-
lated as the angle between the horizontal line and the 
line connecting toe and heel markers, the thigh angle was 
calculated as the angle between the horizontal line and 
the line connecting hip marker and knee marker in sagit-
tal plane, and the shank angle was calculated as the angle 
between the horizontal line and the line connecting knee 
marker and ankle marker.

Data pre-processing
For the GRF dataset, GRF in anteroposterior (AP), ver-
tical (VT), and mediolateral (ML) directions within 3  s 
were used as input observations. The duration contains 
2 TD and 2 LO events for the left side (recovery side for 
slip, perturbed side for trip) on the force plates. However, 

due to the size limitation of the force plates, the GRF for 
other steps was not collected, and, therefore, not included 
in this study. For the marker dataset, trajectories of 8 
markers (heel, toe, knee, and hip for both limbs) in AP 
and VT directions within the same duration were used as 
input observations. These markers were selected accord-
ing to previous research [27–29]. For the angle dataset, 
trajectories of 6 segment angles (foot, shank, and thigh 
for both limbs) in the sagittal plane were calculated using 
the marker coordinates and used as input observations. 
The GRF was low-pass filtered at 50 Hz using a bidirec-
tional fourth-order Butterworth filter, then downsampled 
to 120 Hz to match the dimension of kinematic data [30]. 
The marker and angle data were firstly gap-filled based 
on the nearest non-missing value (fillmissing function in 
MATLAB), and then low-pass filtered at 12  Hz using a 
bidirectional fourth-order Butterworth filter [30].

For the output data, TD and LO events were manually 
detected and cross-validated, for each frame we encode a 
TD as 1, LO as -1 and a non-event as 0. As a result, each 
output consisting of 360 frames (120 frames per second) 
is encoded as a vector of {0, 1, -1}. Figure  1a illustrates 
instances of TD events, represented by values of 1 amidst 
zeros. To better map the multivariate time series input 
data to the 1-dimensional time series output data, we 
applied a hemodynamic response function (HRF) to the 
1D output data (Fig.  1b). By employing the HRF func-
tion, we can account for temporal dynamics in the gait 
data, effectively smoothing the transitions (i.e., 0 to 1) 
and creating a more robust representation of the event-
related signals. This approach offers several benefits. 
First, it helps capture not only the precise moment of 
each gait event but also the temporal effects around these 
events, such as the gradual changes before and after TD 
or LO. Second, the HRF helps mitigate data imbalance 
issues during model training. In gait event detection, 
non-events are more frequent than other events (Fig. 1a), 
leading to a serious imbalance in the output labels. the 
HRF helps to normalize the influence of more frequently 
occurring events compared to rarer ones. Lastly, this 
approach improves the robustness of the output data, as 

Fig. 1  A sample of (a) raw 1-D output data and (b) output data processed with the HRF
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the HRF-enhanced signals align better with the inherent 
biomechanical processes underlying gait. It allows the 
model to consider both immediate and residual effects 
for gait event detection. The data processing and imple-
mentation of the HRF were conducted using customized 
MATLAB scripts.

Model architecture
To map the multivariate time series input data to a one-
dimensional time series output, we developed and trained 
a deep learning model featuring Bi-GRU layers, which are 
well-suited for sequential data modelling. Our network 
architecture includes two Bi-GRU layers, supplemented 
by a batch normalization layer to stabilize learning [31], 
a dropout layer to prevent overfitting [32], and a dense 
layer for output integration (Fig.  2). Integrating two Bi-
GRU layers enhanced our network’s capability to discern 
complex relationships and deeper features in the data, 
but adding more than two layers did not improve perfor-
mance due to shortage of data.

The network utilizes the Adam optimizer [33] and 
a custom weighted loss function. This loss function, 
designed to square the differences between predicted 
and observed outputs, was adapted to emphasize errors 
proportionally to their importance; observations closer 
to 1 received higher weights, reflecting their greater sig-
nificance in the training process. Training was conducted 
using the standard mini-batch technique with batch 
sizes of 64. The training was halted if no improvement 
in the loss function was observed over three consecutive 
epochs, with a total of 100 epochs planned for the entire 
training process. The Bi-GRU architecture could cap-
ture both forward and backward temporal dependencies 
in the input data, making it well-suited for time-series 
modelling of gait events. Compared to LSTMs, Bi-GRUs 
offer similar performance with reduced computational 
complexity [34]. While Transformer-based models have 

shown promise in many domains, they generally require 
larger datasets for effective training [35], which may not 
align with our dataset size. Hence, the Bi-GRU is selected 
in this study.

In the development of recurrent neural networks 
(RNN), Cho et al. proposed the gated recurrent units 
(GRU) [36]. The GRU structure is as follows. In the ini-
tial state, the output vector starts at zero: ht = 0, t = 0
. Then,

	 zt = sigmoid (Wzxt + Uzht−1 + bz)� (1)

	 rt = sigmoid (Wrxt + Urxt + br)� (2)

	 ht = tanh (Whxt + Uh(rt ⊙ ht−1) + bh� (3)

	 ht = (1 − zt) ⊙ ht−1 + zt ⊙ ht� (4)

Where, ⊙  defines dot product, xt is the input vector at 
time step t, ht is the output vector, ht is the candidate 
activation vector, zt is the update gate vector, rt is the 
reset gate vector. W , U  are the parameters matrices, and 
b is the parameters vector. The Update Gate ( zt) utilizes 
a sigmoid function to determine how much past informa-
tion should be retained, thereby influencing the amount 
of information carried forward. The Reset Gate ( rt) 
decides the extent to which past information is forgot-
ten, enabling the model to eliminate irrelevant data. The 
Candidate Activation ( ht) suggests new memory content 
by combining new input with past information that has 
been adjusted by the reset gate. Finally, the Final Memory 
Update ( ht) merges the old state and the new candidate 
activation, as moderated by the update gate, to update 
the current state effectively.

Contrary to GRU, Bi-GRU is constructed by two unidi-
rectional GRUs facing opposing directions [37]. The cal-
culation of Bi-GRU can be formulated as follows.

Fig. 2  Proposed multi-layer neural network architecture featuring bidirectional GRU Layers
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Here, 
−→
h t and 

←−
h t are the state information of the for-

ward and backward GRU, respectively. GRUfwd is the 
forward GRU, and GRU bwd is the backward GRU. Both 
GRUs follow the formulation of Eq.  (1) – Eq.  (4). ⊕  
denotes concatenating the 

−→
h t and 

←−
h t.

Following the two Bi-GRU layers, the subsequent steps 
of our architecture are outlined as follows.

	 xnorm = BatchNorm (x)� (8)

	 xdrop = Dropout (xnorm)� (9)

	 yt = Dense(xdrop, V, b)� (10)

Here, V  and 𝑏 are the weights and biases of the dense 
layer, respectively. The custom weighted loss function is 
designed to square the differences between predicted and 
observed outputs is as follows.

	 L =
∑

(λ t.(yt − ȳt)2)� (11)

Here, ​λ t is the weight assigned to the observation at 
time step 𝑡.

For the evaluation and training of our models, we 
divided each dataset (marker, angle, and ground reaction 
force) into three distinct parts. Initially, we partitioned 
the entire dataset into an 80% training set and a 20% test 
set (train_test_split from sklearn). Subsequently, we fur-
ther split the training set, allocating 20% of it for valida-
tion purposes (set validation_split = 0.2 in model.fit).

To identify gait events from the output of our trained 
models, we utilized a peak detection algorithm (find_
peaks from scipy) configured to detect peaks with 
required minimal time interval between neighbour-
ing peaks > 250ms and height of peaks > 0.3, default val-
ues were used for other parameters (i.e., width = None, 
prominence = None, rel_height = 0.5). Here, the 250 ms 
was selected as it reflects the minimum time interval 
required for sequential gait events to occur under both 
regular and perturbed walking conditions. According to 
prior research, the step initiation time or step latency 
(from perturbation onset to recovery foot liftoff) in per-
turbed gait is around 300 ms [38], and the whole gait 
duration would be longer as the swing phase (foot liftoff 
to its touchdown) is around 100 ms in perturbed walk-
ing [39]. Therefore, 250 ms is a reasonable threshold to 

differentiate distinct gait events. The peak height thresh-
old of 0.3 was chosen to ensure that only peaks cor-
responding to gait events were detected and filter out 
noise or low-amplitude fluctuations that do not repre-
sent actual gait events. The specific value was empirically 
determined based on the characteristics of the dataset, 
ensuring robustness across various trial types, including 
perturbed walking. Then, we calculated and compared 
the discrepancies between the detected outputs and the 
observed outputs across the different models. We trained 
the model separately for TD and LO detection and 
detected gait events only on the left side as it was more 
affected by external perturbation. The model training was 
conducted in Python using Keras version 2.12, with Ten-
sorFlow serving as the backend framework.

Evaluation of performances
The test set was used to assess the performance of vari-
ous models by measuring the absolute error between 
the observed output (timing of gait events) and the pre-
dicted output, as depicted in Fig. 3. For gait analysis and 
efficient real-time control of simulation devices such as 
functional electrical stimulation (FES) systems [40], it is 
crucial that the target detection time maintains an error 
margin below 50 ms. Accordingly, a tolerance of 50 ms, 
equivalent to 6 frames at the given sampling rate, was 
established as the criterion for calculating the accuracy of 
detection rate [41]. Additionally, detection accuracy was 
also calculated using a tolerance of 30 ms [10, 42–44], a 
threshold previously adopted in similar studies [45, 46].

Statistical analysis
A two-way ANOVA was conducted to analyze the effect 
of different models (GRF, angle, and marker) and trial 
types (regular walking, slip, and trip) on the error of 
detected gait events. Significant main effects and interac-
tions were followed up with independent t-tests to com-
pare errors across models using different datasets and 
across different trial types. A significant level of 0.05 was 
used for all the analyses. All statistical analyses were per-
formed in Python.

Results
Our results demonstrate that all the models could accu-
rately detect TD and LO events with a mean error of 
< 21ms (Table  1). Moreover, over 92% of TD events 
and over 93% of LO events were accurately detected 
(error < 50ms). Two-way ANOVA comparison across 
the three different models revealed trial effect (F = 11.5, 
p < 0.001) but not model effect on the error of TD detec-
tion. Post-hoc test indicated that slip trials and trip trials 
showed larger error in detected TD than natural walking 
trials (p < 0.001 for both), and no difference was found 
between slip trials and trip trials. Although no model 
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effect was found on the error of TD detection, marker-
based model showed the smallest error (13.6ms) and 
the highest detection accuracy (97% <50ms and 90.5% 
<30ms). According to the performance within different 
trials (Table 2), TD detection for natural walking showed 
the smallest error (≤ 13.52ms) and highest accuracy 
(over 96.9% <50ms and over 90%<30ms). Additionally, 
the marker-based model showed comparable accuracy 

(95.1-98.5%) across different types of trials based on the 
tolerance of 50ms.

For LO detection, two-way ANOVA results showed sig-
nificant model effect (F = 11.36, p < 0.001) and trial effect 
(F = 4.2, p = 0.015) on the error with a significant interac-
tion effect (F = 4.26, p = 0.002). Post-hoc test indicated 
that both marker-based model and angle-based model 
have a smaller error than the GRF-based model (p ≤ 0.003 
for both), with no significant difference between the 
marker-based and angle-based models. However, based 
on the detection rate, marker-based model showed the 
best performance with the highest detection accuracy 
(98.9% <50ms and 94.3% <30ms). Performance within 
different trials showed that the LO detection for natural 
walking exhibited the smallest error and highest accuracy 
for GRF-based model (Table 3). Conversely, the marker-
based and angle-based model demonstrated comparable 
accuracy (95.1-98.5%) across different types of trials.

Table 1  Overall performance of different models for TD and LO 
detection.
Model Error (mean ± SD) % of error < 50ms % of error < 30ms
GRF-TD 15.94 ± 51.13 92.91%# 86.92%
Angle-TD 17.88 ± 52.03 95.02% 86.56%#

Marker-TD 13.58 ± 20.31 97.04% 90.46%
GRF-LO 20.54 ± 70.18# 93.14% 88.28%
Angle-LO 12.24 ± 32.46 97.55% 92.23%
Marker-LO 9.96 ± 12.89* 98.91%* 94.26%*

* best model for each metric, # worst model for each metric

Table 2  Performance of models for TD detection in natural 
walking, trip and slip trials.
Model Type Mean 

error (ms)
% of 
error < 50ms

% of 
error < 30ms

GRF-TD Nat 11.61 96.89% 93.11%
Trip 22.72 88.95%# 81.4%
Slip 19.94 87.24% 77.55%#

Angle-TD Nat 13.52 97.97% 90.1%
Trip 28.61# 94% 83.33%
Slip 18.42 90% 82%

Marker-TD Nat 10.81* 98.46%* 94.62%*

Trip 16.56 96% 86%
Slip 16.67 95.1% 85.78%

* best model for each metric, # worst model for each metric

Table 3  Performance of models for LO detection in natural 
walking, trip and slip trials.
Model Type Mean 

error (ms)
% of 
error < 50ms

% of 
error < 30ms

GRF-LO Nat 14.5 97.06% 94.61%
Trip 19.86 89.89% 82.98%
Slip 33.13# 88.35%# 80.58%#

Angle-LO Nat 10.38 97.64% 93.72%
Trip 17.46 96.43% 88.69%
Slip 11.32 98.37% 92.39%

Marker-LO Nat 10.52 98.65% 92.97%
Trip 9.09* 99.40%* 95.78%*

Slip 9.65 98.98% 95.41%
* best model for each metric, # worst model for each metric

Fig. 3  A sample of observed 1D time series output (solid) from the marker-based model for TD detection and reconstructed output (dashed). Here, each 
peak represents a TD event
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Discussion
This study developed three automatic gait event detec-
tion models utilizing on GRF, angle, and marker data. All 
these models could accurately detect TD and LO events 
for both perturbed and unperturbed walking. Our com-
parative analysis further reveals that, contrary to tra-
ditional views which favor GRF-based methods as the 
gold standard, alternative kinematic approaches utilizing 
marker and angular data yield promising results. Notably, 
the marker-based model achieved accuracy > 97% and a 
mean error < 14 ms in detecting both TD and LO events 
within datasets containing regular and perturbed walking 
trials, underscoring the effectiveness of motion data in 
enhancing automatic gait event detection.

The models developed in our study can significantly 
reduce engineering costs and increase the accuracy of 
detected gait events. Traditional methods relying on 
GRF thresholds are often ineffective for perturbed walk-
ing due to varied recovery strategies after external per-
turbations [12, 13]. The perturbation could additionally 
introduce noise in the GRF signals. For example, events 
like the contact between the foot and obstacle, the trig-
ger of perturbation, and the hitting between the slider 
and blocker can result in a GRF above the threshold, 
leading to false positives. Therefore, manual gait event 
detection becomes necessary for the perturbed trials. 
This process takes over 5  min per gait cycle for pertu-
trbed walking trials, and cross-validation is necessary to 
mitigate the effects of human errors and biases on the 
gait events, which further increase the time consump-
tion. Our models can substantially reduce the time costs 
by at least two hours per clinic visit for 24 perturbed tri-
als [47] and minimize errors caused by human factors. 
Although many kinematic-based automatic detection 
methods were developed, and most of them showed a 
good accuracy (Precision or F1 score > 90%) of gait-event 
detection for regular walking in healthy older adults [48, 
49], patients with multiple sclerosis [50], Parkinson’s Dis-
ease patients [51], and post-stroke patients [50]. How-
ever, previous study evaluated different automated event 
detection algorithms in pathological gait and found that 
their accuracy is relatively lower in certain abnormal gait 
scenarios [10]. For example, in gait with transverse plane 
(rotational) abnormalities, which often occur in slip tri-
als, previous algorithms only detect less than 80% of TD 
events within four frames (33ms) [48, 52]. Similarly, in 
gait with foot dragging, which could occur in both slip 
and trip trials, previous algorithms could only identify 
70–89% of LO events within four frames [48, 53, 54]. 
Moreover, the unpredictable and inconsistent nature of 
gait patterns (no matter normal or abnormal) during per-
turbed walking further challenges the reliability of these 
algorithms. Individual’s gait pattern could change from 
step-to-step or trial-to-trial. As a result, their accuracy 

of existing methods in detecting gait events under such 
conditions is significantly affected.

Although the GRF-based method was tradition-
ally considered a gold standard for automatic gait event 
detection [6], in this study, the GRF-based model exhib-
ited the worst performance, particularly for perturbed 
walking trials, compared to other models. For regular 
walking, all three models showed comparable detec-
tion accuracy (96.9-98.7% for all models in Tables 2 and 
3), suggesting that the discrepancy in performance are 
primarily influenced by walking scenarios. Perturbed 
walking could introduce significant noise into GRF sig-
nals, which likely affect the models’ accuracy. Even if 
the perturbation occurs during forward walking in our 
study, individuals may still experience balance loss in 
the mediolateral direction and pelvis rotation, causing 
the recovery step to land across the walkway’s midline. 
This results in increased GRF or abrupt spikes in GRF 
signals for both limbs at recovery TD, leading to failures 
in gait event detection for the GRF-based model. In con-
trast, the marker-based or angle-based models rely on 
kinematic data, which demonstrate greater resilience to 
noise in perturbated trials due to their ability to capture 
overall body movements rather than localized interac-
tions (i.e., points of foot contact). Hence, these data are 
relatively less affected by the variability of recovery strat-
egies during perturbations. Our results further showed 
that the performance for angle-based and marker-based 
models are comparable across different trial types (detec-
tion accuracy in Table  3). Given that cross-landing or 
cross step is common in perturbed walking trials [55], we 
chose not to exclude such trials to maintain a large sam-
ple size for model training. Additionally, our goal is to 
develop a model with robust generalization capabilities, 
ensuring reliable gait event detection regardless of cross-
landing occurrences.

Besides signal noise, the observed discrepancy in per-
formance among the three models may be influenced by 
the specific architecture selected in this study. The Bi-
GRU architecture was chosen for its ability to capture 
temporal dependencies in sequential data effectively, but 
it might not fully leverage the spatial characteristics of 
GRF data compared to kinematic data. While architec-
tures that combine RNNs with convolutional layers or 
those specifically designed to process multi-dimensional 
time-series data (e.g., CNN-RNN hybrids) might better 
capture the rich spatiotemporal features inherent in GRF 
data [56]. Future work could explore alternative architec-
tures better suited to GRF data to further improve the 
model’s performance.

Our methods resulted in a larger standard deviation 
of errors (> 32 ms) for the angle-based and GRF-based 
models. This variability can be attributed to the detection 
of extra peaks in the estimated 1D output data. These 
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extra peaks could lead to substantial errors, exceeding 
500 ms (see Fig. 4), which significantly increases both the 
mean value and standard deviation of the absolute error. 
In slip trials, these extra peaks were often misidentified 
as a TD event due to aborted stepping, a scenario in 
which the foot is not clearly lifted off and foot dragging 
may occur after the LO phase [12]. Implementing a more 
refined peak detection algorithm based on peak proper-
ties (i.e., peak height, peak width, plateau size, and peak 
distances) could mitigate this issue by more accurately 
identifying peaks corresponding to actual gait events, 
thereby improving the overall performance of the detec-
tion methods.

Several strategies can be explored to further improve 
the overall performance of our models. First, expanding 
the dataset through the collection of more gait data or by 
employing data augmentation techniques such as noise 
injection can increase both the volume and diversity of 
the training data, facilitating the training of deeper net-
works. Exploring ensemble methods could also improve 
performance by leveraging the strengths of multiple 
models [57]. Lastly, we plan to investigate more complex 
RNN architectures to further refine and strengthen our 
model.

There are several limitations in this study. First, the 
models developed in this study were only verified using 
gait data from healthy older adults, which limits the gen-
eralizability of our findings to clinical populations. To 
explore the effectiveness of these models for different 
populations, future research should include individu-
als with pathological gait patterns, such as those with 
chronic stroke, Parkinson’s disease, or multiple sclerosis. 

Collecting data from these populations will allow us to 
refine the model for diverse gait patterns and validate 
its robustness in real-world clinical settings. Second, 
the automatic gait event models were only developed 
and verified for the left limb, which takes the first com-
pensatory stepping after both slip and trip perturbation. 
The gait events for this limb are more affected by human 
errors and biases due to the variety of recovery strate-
gies employed by this limb during the first compensa-
tory stepping. Therefore, it is reasonable to postulate that 
these models should have a higher detection accuracy for 
the right limb. However, further validation is required to 
verify this.

Conclusion
Our study is the first to develop and evaluate automatic 
gait event models using deep learning methods for per-
turbed walking. The kinematic-based models could accu-
rately detect over 95% of gait events with an absolute 
error of < 50 ms for both regular and perturbed walk-
ing. The ability to automatically detect gait events dur-
ing perturbed conditions is crucial for understanding and 
analyzing balance control mechanisms and reactive strat-
egies for fall prevention [58]. Wearable sensors (i.e., IMU 
sensor) or computer vision techniques can be integrated 
into real-time gait analysis using the proposed models. 
For example, angle-based models can leverage joint angle 
data captured by IMUs to provide real-time detection of 
gait events like TD and LO. By implementing these mod-
els in embedded systems, wearable devices can monitor 
gait patterns continuously, providing alerts for potential 
fall risks or abnormal gait patterns. This integration could 

Fig. 4  The violin plot of error distributions across all models and trial types for TD detection (left) and LO detection (right). The dashed black lines indi-
cate ± 50 ms threshold of error
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also help fall prevention programs by providing real-time 
feedback, it can identify deviations from desired move-
ment patterns or ineffective reactive strategies, thereby 
correcting gait pattern or reactive actions to improve sta-
bility and reduce fall risks. Additionally, long-term moni-
toring enables the development of tailored adjustment 
programs that adapt to an individual’s progression over 
time, ensuring personalized and effective intervention.
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